

AE 6769 / ME 6769 – Linear Elasticity

Spring 2024

Credit:	3-0-3 (3 credits, 3 hours per week)
Prerequisites:	Graduate standing; Principles of Continuum Mechanics (ME6201) or equivalent (recommended); Mechanics of Deformable Bodies (COE3001) or equivalent (recommended)
Instructor:	Dr. Stephane Berbenni Office: 101, Level 1 -GTL Tel.: +33 (0) 3 8720 3931 Email: <u>stephane.berbenni@georgiatech-metz.fr</u>
Office Hours: Textbook (optional):	Tue: 10:45 – 11:45 AM / Thu: 10:45 – 11:45 AM • Barber, J.R., <i>Elasticity</i> , Kluwer Academic Publishers, Dordrecht, 2002 (2 nd edition).
Other reference book	 ks: • Bower, A.F., Applied Mechanics of Solids, CRC Press, 2009; (http://solidmechanics.org/) • Timoshenko, S.P. and Goodier, J.N., Theory of Elasticity, 3rd Ed., McGraw-Hill, 1970; • Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, 4th Ed., Dover, 1944; • Landau, L.D., and Lifschitz, E.M., Theory of Elasticity (English Translation by Sykes, J.B., and Reid, W.S.), Pergamon/Addison Wesley, 1959. (physicists' view of elasticity)
Objectives:	This class will introduce governing equations of linear elasticity and will focus on solutions of boundary value problems in two and three dimensions using several formulations and methods.
Topics:	 -Review of continuum mechanics and field equations (3 weeks): Strain, stress, strain compatibility, stress equilibrium, linear elasticity constitutive law, uniqueness of solution, boundary conditions. -Two-dimensional elasticity (9 weeks): *Plane strain, plane stress, Airy stress function method, *Problems in Cartesian coordinates: rectangular beams, general solution, *Problems in polar coordinates: circular hole problems, Michell general solution, contact problems *Singular solutions: dislocations, cracks, Kelvin problem. Three-dimensional elasticity problem (2 weeks)

- *Green's function method,
- * Galerkin vector and applications
- Assignments: Homework assignments will be graded, and the solutions will be posted on Canvas. No late assignments will be accepted (except acceptable reason). All class handouts will be posted on Canvas.
- Evaluation: 30% Homework 30% Mid-term 40% Final Exam

Grading Scale Your final grade will be assigned as a letter grade according to the following scale:

- A 90-100%
- B 80-89%
- C 70-79%
- D 60-69%
- F 0-59%
- Important dates: 1st class day: TBD (introductive lecture) Last instructional class day: TBD Drop day: TBD Mid-term examination: TBD Recess week: TBD Final examination: 2 hours 50 minutes (TBD during the semester).
- Academic Integrity: Georgia Tech aims to cultivate a community based on trust, academic integrity, and honor. Students are expected to act according to the highest ethical standards. For information on Georgia Tech's Academic Honor Code, please visit http://www.catalog.gatech.edu/policies/honor-code/ or http://www.catalog.gatech.edu/rules/18/. Any student suspected of cheating or plagiarizing on a quiz, exam, or assignment will be reported to the Office of Student Integrity, who will investigate the incident and identify the appropriate penalty for violations.

Student-Faculty Expectations Agreement:

At Georgia Tech we believe that it is important to strive for an atmosphere of mutual respect, acknowledgement, and responsibility between faculty members and the student body. See <u>http://www.catalog.gatech.edu/rules/21/</u> for an articulation of some basic expectation that you can have of me and that I have of you. In the end, simple respect for knowledge, hard work, and cordial interactions will help build the environment we seek. Therefore, I encourage you to remain committed to the ideals of Georgia Tech while in this class.